Upper and Lower Bounds for Tree-Like Cutting Planes Proofs

نویسندگان

  • Russell Impagliazzo
  • Toniann Pitassi
  • Alasdair Urquhart
چکیده

In this paper we study the complexity of Cutting Planes (CP) refutations, and tree-like CP refutations. Tree-like CP proofs are natural and still quite powerful. In particular, the propositional pigeonhole principle (PHP) has been shown to have polynomial-sized tree-like CP proofs. Our main result shows that a family of tautologies, introduced in this paper requires exponential-sized tree-like CP proofs. We obtain this result by introducing a new method which relates the size of a CP refutation to the communication complexity of a related search problem. Because these tautologies have polynomial-sized Frege proofs, it follows that tree-like CP cannot polynomially simulate Frege systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Chvatal Rank and Cutting Planes Proofs

We study the Chvátal rank of polytopes as a complexity measure of unsatisfiable sets of clauses. Our first result establishes a connection between the Chvátal rank and the minimum refutation length in the cutting planes proof system. The result implies that length lower bounds for cutting planes, or even for tree-like cutting planes, imply rank lower bounds. We also show that the converse impli...

متن کامل

Lower Bounds for Cutting Planes Proofs with Small Coe cients

We consider small-weight Cutting Planes (CP) proofs; that is, Cutting Planes (CP) proofs with coeecients up to Poly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of small-weight CP, our method also gives a new and simple...

متن کامل

Exponential Separations between Restricted Resolution and Cutting Planes Proof Systems

We prove an exponential lower bound for tree-like Cutting Planes refutations of a set of clauses which has polynomial size resolution refutations. This implies an exponential separation between tree-like and dag-like proofs for both CuttingPlanes and resolution; in both cases only superpolynomial separations were known before [30, 20, 10]. In order to prove this, we extend the lower bounds on t...

متن کامل

Lower Bounds for Monotone Real Circuit Depth and Formula Size and Tree-Like Cutting Planes

Using a notion of real communication complexity recently introduced by J. Kraj cek, we prove a lower bound on the depth of monotone real circuits and the size of monotone real formulas for st-connectivity. This implies a super-polynomial speed-up of dag-like over tree-like Cutting Planes proofs.

متن کامل

On Lower Bound Methods for Tree-like Cutting Plane Proofs

In the book Boolean Function Complexity by Stasys Jukna [7], two lower bound techniques for Tree-like Cutting Plane proofs (henceforth, “Tree-CP proofs”) using Karchmer-Widgerson type communication games (henceforth, “KW games”) are presented: The first, applicable to Tree-CP proofs with bounded coefficients, translates Ω(t) deterministic lower bounds on KW games to 2 logn) lower bounds on Tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994